Biochar: Impacts on Soil Microbes and the Nitrogen Cycle

Kurt Spokas

USDA-ARS, Soil and Water Management Unit, St. Paul, MN Adjunct Professor University of Minnesota – Department of Soil, Water and Climate

USDA-ARS Biochar and Pyrolysis Initiative

Multi-location USDA-ARS research efforts:

REAP Project (24 locations): Renewable Energy Assessment Project

Biochar and Pyrolysis Initiative (15 locations)

Ongoing field plot trial (6 locations)

Biochar: New purpose not a new material (>10,000 to 30,000 BC)

Pyrolysis, carbonization, and coalification are well establish conversion processes with long research histories

Except:

Prior emphasis:

Cave Drawings

Biochar: New purpose not a new material

Pyrolysis, carbonization, and coalification are well establish conversion processes with long research histories

Except:

Prior emphasis:

Conversion of biomass to liquids (bio-oils) or gaseous fuels and/or fuel intermediates Solid byproduct (biochar) has long been considered an "undesirable side product" (Titirici et al., 2007)

➤ What is new

The use (or purpose) for the creation of charred biomass

> Atmospheric C sequestration

Dates to 1980's and early 2000's

(Goldberg 1985; Kuhlbusch and Crutzen, 1995; Lehmann, 2006)

Cave Drawings (>10,000 to 30,000 BC)

Carbon Sequestration Rates

Ecosystem	Range of Natural CO ₂ Sequestration Rates (tons C acre ⁻¹ yr ⁻¹)		
Cropland	0.2 to 1		
Forest	0.1 to 4		
Grassland / Prairie	0.1 to 1		
Swamp / Floodplain / Wetland	2 to 4		

Biochar → Goal is to increase rates of C sequestration

Biochar: Black Carbon Continuum

Problem -> Lack of nomenclature uniformity (Jones et al., 1997)

Biochar: Black Carbon Continuum

Biochar – Spans across <u>multiple divisions</u> in the Black C Continuum However, biochar is NOT a new division...

Comparisons of Natural vs. Synthetic

Natural Biochar

Synthetic (Pyrolysis) Biochar

-Heterogeneous feedstock

- Impurities
 - Soil and oxygen
 - Minerals (metals) alter yields

(e.g. Robertson, 1969; Bonijolya et al., 1982; Baker, 1989)

- Multiple feedstock sources
 - Species and types

-Variable temperature

- 80 to 1000 °C

-Air cooled/Precipitation/Solar (UV)

- Exposed to environmental conditions

-Pure homogeneous feedstock

- -"Constant" temperature
 - Industrial Process
- -Typically cooled under anaerobic conditions (no water)
 - No weather exposure

Biochar: Soil Stability

➤ Over a 100 year history of research

Potter (1908) – Initial observation of fungi/microbial degradation of lignite (low grade coal/charcoal)

Biochar Degradation Study	Residence Time (yr)		
Steinbeiss et al. (2009)	<30		
Hamer et al. (2004)	40 to 100		
Bird et al. (1999)	50-100		
Lehmann et al. (2006)	100's		
Baldock and Smernik (2002)	100-500		
Hammes et al. (2008)	200-600		
Cheng et al. (2008)	1000		
Harden et al. (2000)	1000-2000		
Middelburg et al. (1999)	10,000 to 20,000		
Swift (2001)	1,000-10,000		
Zimmerman (2010)	100's to >10,000		
Forbes et al. (2006)	Millennia based on C-dating		
Liang et al. (2008)	100's to millennia		

Possible Stability Explanation > O:C Ratio

Biochar	Residence			
Degradation	Time (yr)			
Study				
Baldock and	100-500			
Smernik (2002)				
Bird et al.	50-100			
(1999)				
Cheng et al.	1000			
(2008)				
Forbes et al.	Millennia			
(2006)	based on C-			
	dating			
Hamer et al.	40 (charred			
(2004)	straw residue)			
	80 (charred			
	wood)			
Hammes et al.	200-600			
(2008)				
Harden et al.	1000-2000			
Harden et al. (2000)				
Harden et al. (2000) Liang et al.	several			
Harden et al. (2000)				
Harden et al. (2000) Liang et al.	several centuries to millennia			
Harden et al. (2000) Liang et al.	several centuries to			
Harden et al. (2000) Liang et al. (2008) Lehmann et al. (2006)	several centuries to millennia 100's			
Harden et al. (2000) Liang et al. (2008) Lehmann et al. (2006) Middelburg et	several centuries to millennia 100's			
Harden et al. (2000) Liang et al. (2008) Lehmann et al. (2006)	several centuries to millennia 100's 10,000 to 20,000			
Harden et al. (2000) Liang et al. (2008) Lehmann et al. (2006) Middelburg et	several centuries to millennia 100's			
Harden et al. (2000) Liang et al. (2008) Lehmann et al. (2006) Middelburg et al. (1999) Steinbeiss et al. (2009)	several centuries to millennia 100's 10,000 to 20,000 <30			
Harden et al. (2000) Liang et al. (2008) Lehmann et al. (2006) Middelburg et al. (1999) Steinbeiss et al. (2009) Swift (2001)	several centuries to millennia 100's 10,000 to 20,000 <30 1,000-10,000			
Harden et al. (2000) Liang et al. (2008) Lehmann et al. (2006) Middelburg et al. (1999) Steinbeiss et al. (2009)	several centuries to millennia 100's 10,000 to 20,000 <30			

Proposed Biochar Mechanisms

- 1. Alteration of soil physical-chemical properties
 - ✓ pH, CEC, decreased bulk density, increased water holding capacity
- 2. Biochar provides improved microbial habitat
- 3. Sorption/desorption of soil GHG and nutrients
- 4. Indirect effects on mycorrhizae fungi through effects on other soil microbes
 - ✓ <u>Mycorrhization helper bacteria</u> → produce furan/flavoids beneficial to germination of fungal spores

Soil Microbe Impacts: Laboratory Incubations

We know when we are sick....

Fever, aches, pains.....

How about for soil microbes:

Look at their "products" – e.g. CO₂, CH₄, N₂O

- Implications on the rates of reaction and amount of gases produced
- Provide clues into the mechanisms

Biochar impacts on Soil Microbes & N Cycling

- 44 different biochars evaluated
- > 11 different biomass parent materials
 - Hardwood, softwood, corn stover, corn cob, macadamia nut, peanut shell, sawdust, algae, coconut shell, turkey manure, distillers grain
- Represents a cross-sectional sampling of available "biochars"

1	to	84	%
	1	1 to	1 to 84

- N content 0.1 to 2.7 %
- Production Temperatures 350 to 850 °C
- Variety of pyrolysis processes
 - Fast, slow, hydrothermal, gasification

Laboratory Biochar Incubations

- Soil incubations:
 - Serum bottle (soil + biochar)
 - 5 g soil mixed with 0.5 g biochar
 (10% w/w) [GHG production]
 - Field capacity and saturated

- Mason Jar (biochar mixed & isolated)
 - Looking at impact of biochar without mixing with soil

Influence of biochar addition on GHG Production

Biochar isolated or mixed with soil

Ethylene Production Rates

Ethylene Impacts

Soil Microbial Impacts

- ✓ Induces fungal spore germination
- ✓Inhibits/reduces rates of nitrification/denitrification
- ✓Inhibits CH₄ oxidation (methanotrophs)
- ✓Involved in the flooded soil feedback Both microbial and plant (adventitious root growth)

Ethylene Headspace Concentration (0 to 275 ppmv)

Ethylene Headspace Concentration (0 to 275 ppmv)

Closer look at N-cycling

(hardwood sawdust biochar)

Brief Overview of N-cycle

Putting the pieces together: Not quite a full picture yet...

Ethylene Production

•Ethylene could provide a mechanism behind reduced nitrification/denitrification activity

- •Clough et al. (2010) also hypothesized that α -pinene could be involved as a nitrification inhibitor
 - $\triangleright \alpha$ -pinene observed as volatile from vegetation
 - involved in insects' chemical communication system

Despite the different chemicals – Same mechanism:
 Chemical inhibitors behind the suppression of N₂O production

Headspace Thermal Desorption GC/MS scans of biochars

Biochar has a variety of sorbed volatiles = range of potential microbial inhibitors

Impact of Biochar Volatiles in Soils

- Volatile organic compounds can interfere with microbial processes
 - Terpenoids interfere with nitrification [Amaral et al., 1998; White 1994]
 - Furfural + derivatives inhibits microbial fermentation & nitrification (Couallier et al., 2006; Datta et al. 2001)
 - Benzene, Esters Also inhibit microbial reactions
 - Still ongoing and developing research area in the plant/microbe research area
- Alterations in VOC content could be sensitive indicators of soil conditions (Leff and Fierer, 2008).
- Sorbed BC volatiles could interfere with microbial signaling (communication): Releasing or sorb signaling compounds

Conclusions

- Another piece to the puzzle: Ethylene + sorbed VOC's
 - Sorbed volatiles and degradation products (ethylene) should be included in the potential biochar mechanisms
 - Microbial inhibitors Could also explain plant effects
- Reduction in N₂O production: Consequence of sorbed volatiles impacting the nitrification process
 - Accumulation of NH⁺₄ and decreased NO⁻₃ production
 - Length of impact?
- No absolute "Biochar" consistent trends: Highly variable and different responses
 to biochar as a function of soil ecosystem (microbial linkage) & position on black
 carbon continuum:

Typically:

- Reduced basal CO₂ respiration
- Reduced CH₄ oxidation activity
- Reduced N₂O production activity
- Reduced NO₃ production (availability)
- Increased extractable NH₄ concentrations
- Exceptions DO exist

Acknowledgements

I would like to acknowledge the cooperation:

Dynamotive Energy Systems

Fast pyrloysis char (CQuest™) through non-funded CRADA agreement

Best Energies

Slow pyrolysis char through a non-funded CRADA agreement

Northern Tilth

Minnesota Biomass Exchange

NC Farm Center for Innovation and Sustainability

National Council for Air and Stream Improvement (NCASI)

Illinois Sustainable Technology Center (ISTC) [Univ. of Illinois]

Biochar Brokers

Chip Energy

AECOM

Laboratorio di Scienze Ambientali R.Sartori - C.I.R.S.A. (University of Bologna, Italy)

USDA-ARS Biochar and Pyrolysis Initiative

Technical Support: Martin duSaire, Tia Phan, Lindsey Watson, Lianne Endo,

Kia Yang and Amanda Bidwell

"The Nation that destroys its soil destroys itself"

Franklin D. Roosevelt